Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Aging (Albany NY) ; 162024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663941

RESUMO

Head and neck tumors are malignant tumors that appear in the head and neck. Although much progress has been made in the treatment of head and neck tumors, many challenges remain. The prognosis of some advanced cases remains poor and survival and quality of life after treatment face certain limitations. Therefore, further research into the pathogenesis and treatment options for head and neck tumors is important in order to improve the prognosis and quality of life of patients. The Protein Arginine Methyltransferase (PRMT) family is a class of enzymes that are responsible for adding methyl groups to arginine residues in proteins. PRMT family members play important roles in regulating many cellular processes, such as transcriptional regulation, signaling, and cell cycle regulation. Recent studies have shown that the PRMT family also plays an important function in tumorigenesis and development. Here, we found that PRMT family members are significantly overexpressed in head and neck tumors and that PRMT5 may serve as an independent prognostic factor in head and neck tumors. We found that PRMT5-regulated differential genes were significantly enriched in tumor-associated signaling pathways such as IL-17 and p53. And we also found that the expression of PRMT5 in head and neck tumors was significantly correlated with immune cell infiltration, m6A as well as the expression of ferroptosis-related genes, and drug sensitivity. These results suggest that PRMT may play an important role in the development of head and neck tumors.

2.
J Inflamm Res ; 17: 2103-2118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601771

RESUMO

Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.

3.
J Biol Chem ; 300(5): 107226, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537697

RESUMO

Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.

4.
Int J Biol Sci ; 20(4): 1125-1141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385081

RESUMO

Previous studies have demonstrated that diallyl disulfide (DADS) exhibits potent anti-tumor activity. However, the pharmacological actions of DADS in inhibiting the growth of colorectal cancer (CRC) cells have not been clarified. Herein, we show that DADS treatment impairs the activation of the pentose phosphate pathway (PPP) to decrease PRPP (5-phosphate ribose-1-pyrophosphate) production, enhancing DNA damage and cell apoptosis, and inhibiting the growth of CRC cells. Mechanistically, DADS treatment promoted POU2F1 K48-linked ubiquitination and degradation by attenuating the PI3K/AKT signaling to up-regulate TRIM21 expression in CRC cells. Evidently, TRIM21 interacted with POU2F1, and induced the K272 ubiquitination of POU2F1. The effects of DADS on the enhanced K272 ubiquitination of POU2F1, the PPP flux, PRPP production, DNA damage and cell apoptosis as well as the growth of CRC tumors in vivo were significantly mitigated by TRIM21 silencing or activating the PI3K signaling in CRC cells. Conversely, the effects of DADS were enhanced by TRIM21 over-expression or inhibiting the PI3K/AKT signaling in CRC cells. Collectively, our findings reveal a novel mechanism by which DADS suppresses the growth of CRC by promoting POU2F1 ubiquitination, and may aid in design of novel therapeutic intervention of CRC.


Assuntos
Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/análogos & derivados , Compostos Alílicos , Neoplasias Colorretais , Dissulfetos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/genética , Compostos Alílicos/farmacologia , Compostos Alílicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Fator 1 de Transcrição de Octâmero/genética
5.
Cancer Commun (Lond) ; 44(2): 185-204, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38217522

RESUMO

Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.


Assuntos
Ferroptose , Neoplasias , Humanos , Aminoácidos , Glucose , Ferro
6.
Cancer Cell Int ; 24(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238756

RESUMO

One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.

7.
Stroke ; 55(1): 156-165, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037225

RESUMO

BACKGROUND: Stroke survivors with impaired balance and motor function tend to have relatively poor functional outcomes. The cerebellum and primary motor cortex (M1) have been suggested as targets for neuromodulation of balance and motor recovery after stroke. This study aimed to compare the efficacy and safety of intermittent theta-burst stimulation (iTBS) to the cerebellum or M1 on balance and motor recovery in patients with stroke. METHODS: In this randomized, double-blind, sham-controlled clinical trial, patients with subacute stroke were randomly divided into 3 groups: M1-, cerebellar-, and sham-iTBS (n=12 per group; 15 sessions, 3 weeks). All outcomes were evaluated before intervention (T0), after 1 week of intervention (T1), after 3 weeks of intervention (T2), and at follow-up (T3). The primary outcome was the Berg balance scale score at T2. Secondary outcomes include the Fugl-Meyer assessment scale for lower extremities, the trunk impairment scale, the Barthel index, the modified Rankin Scale, the functional ambulation categories, and cortical excitability. RESULTS: A total of 167 inpatients were screened, 36 patients (age, 57.50±2.41 years; 10 women, 12 ischemic) were enrolled between December 2020 and January 2023. At T2, M1- or cerebellar-iTBS significantly improved Berg balance scale scores by 10.7 points ([95% CI, 2.7-18.6], P=0.009) and 14.2 points ([95% CI, 1.2-27.2], P=0.032) compared with the sham-iTBS group. Moreover, the cerebellar-iTBS group showed a significantly greater improvement in Fugl-Meyer assessment scale for lower extremities scores by 5.6 points than the M1-iTBS ([95% CI, 0.3-10.9], P=0.037) and by 7.8 points than the sham-iTBS ([95% CI, 1.1-14.5], P=0.021) groups at T2. The motor-evoked potential amplitudes of the M1- and cerebellar-iTBS groups were higher than those of the sham-iTBS group (P<0.001). CONCLUSIONS: Both M1- and cerebellar-iTBS could improve balance function. Moreover, cerebellar-iTBS, but not M1-iTBS, induced significant effects on motor recovery. Thus, cerebellar-iTBS may be a valuable new therapeutic option in stroke rehabilitation programs. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2100047002.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana , Cerebelo
8.
Cancer Gene Ther ; 31(1): 9-17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102462

RESUMO

Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/ß-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Oncogênicas Virais/genética , Transdução de Sinais/genética , Neoplasias do Colo do Útero/genética , Carcinogênese , Proteínas E7 de Papillomavirus/genética
9.
Acta Pharmaceutica Sinica ; (12): 225-231, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005429

RESUMO

Hydrogen peroxide (H2O2) and nitric oxide (NO) has a short half-life, low bioavailability, poor tumor targeting and systemic adverse reactions in the physiological environment. In this study, phacoemulsification and nano-precipitation were used to synthesize didecyl dimethyl ammonium bromide (DDAB)/polylactic acid nanoparticles (PLA), then L-arginine (L-Arg) and glucose oxidase (GOx)-loaded nanoparticles (GADP) were prepared, and the in vitro antitumor activity was investigated.The particle size, potential, embedding rate and the ability to produce H2O2/NO of the nanoparticles were investigated. Meanwhile, in vitro cell cytotoxicity against human hepatoma cells (HepG2) was evaluated.The results showed that the prepared L-Arg-DDAB/PLA (ADP) nanoparticles were spherical particles. And the particle size and zeta potential were (225.7 ± 6.33) nm and (+23.5 ± 0.12) mV, respectively. The adsorption rate of GOx was 87.23% ± 0.02%. The drug loading of L-Arg was 15.6% ± 0.22%. The pH value of glucose solution and the amount of H2O2 showed that GADP had good catalytic activity. In vitro cytotoxicity experiments showed that blank nanoparticles were nontoxic, while the drug-loaded nanoparticles presented enhanced antitumor effect on HepG2 cells. And can inhibit tumor cell migration. The low dose nano-scale NO delivery system GADP can effectively inhibit the migration of tumor cells and kill tumor cells, thus producing therapeutic benefits.

10.
Sci Adv ; 9(50): eadj9359, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100593

RESUMO

U6 and 7SK snRNAs have a 5' cap, believed to be essential for their stability and maintained by mammalian MePCE or Drosophila Bin3 enzymes. Although both proteins are required for 7SK stability, loss of neither destabilizes U6, casting doubts on the function of capping U6. Here, we show that the Drosophila Amus protein, homologous to both proteins, is essential for U6 but not 7SK stability. The loss of U6 is rescued by the expression of an Amus-MePCE hybrid protein harboring the methyltransferase domain from MePCE, highlighting the conserved function of the two proteins as the U6 capping enzyme. Our investigations in human cells establish a dependence of both U6 and 7SK stability on MePCE, resolving a long-standing uncertainty. While uncovering a division of labor of Bin3/MePCE/Amus proteins, we found a "Bin3-Box" domain present only in enzymes associated with 7SK regulation. Targeted mutagenesis confirms its importance for Bin3 function, revealing a possible conserved element in 7SK but not U6 biology.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Mamíferos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
11.
Cell Death Discov ; 9(1): 463, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110359

RESUMO

Ferritinophagy, a process involving selective autophagy of ferritin facilitated by nuclear receptor coactivator 4 (NCOA4), entails the recognition of ferritin by NCOA4 and subsequent delivery to the autophagosome. Within the autophagosome, ferritin undergoes degradation, leading to the release of iron in the lysosome. It is worth noting that excessive iron levels can trigger cell death. Recent evidence has elucidated the significant roles played by ferritinophagy and ferroptosis in regulation the initiation and progression of cancer. Given the crucial role of ferritinophagy in tumor biology, it may serve as a potential target for future anti-tumor therapeutic interventions. In this study, we have provided the distinctive features of ferritinophagy and its distinctions from ferroptosis. Moreover, we have briefly examined the fundamental regulatory mechanisms of ferritinophagy, encompassing the involvement of the specific receptor NCOA4, the Nrf2/HO-1 signaling and other pathways. Subsequently, we have synthesized the current understanding of the impact of ferritinophagy on cancer progression and its potential therapeutic applications, with a particular emphasis on the utilization of chemotherapy, nanomaterials, and immunotherapy to target the ferritinophagy pathway for anti-tumor purposes.

12.
Aging (Albany NY) ; 15(22): 12952-12965, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37980165

RESUMO

Colorectal cancer is one of the most common malignant tumors in the digestive system, and its high incidence and metastasis rate make it a terrible killer that threatens human health. In-depth exploration of the targets affecting the progression of colorectal cancer cells and the development of specific targeted drugs for them are of great significance for the prognosis of colorectal cancer patients. Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph subfamily with tyrosine kinase activity, plays a key role in the regulation of signaling pathways related to the malignant phenotype of various tumor cells, but its specific regulatory mechanism in colorectal cancer needs to be further clarified. Here, we found that EphA2 was abnormally highly expressed in colorectal cancer and that patients with colorectal cancer with high EphA2 expression had a worse prognosis. We also found that EphA2 can form liquid-liquid phase separation condensates on cell membrane, which can be disrupted by ALW-II-41-27, an inhibitor of EphA2. In addition, we found that EphA2 expression in colorectal cancer was positively correlated with the expression of ferroptosis-related genes and the infiltration of multiple immune cells. These findings suggest that EphA2 is a novel membrane protein with phase separation ability and is associated with ferroptosis and immune cell infiltration, which further suggests that malignant progression of colorectal cancer may be inhibited by suppressing the phase separation ability of EphA2.


Assuntos
Neoplasias Colorretais , Eritropoetina , Ferroptose , Receptor EphA2 , Humanos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Neoplasias Colorretais/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Transdução de Sinais
13.
J Am Chem Soc ; 145(49): 27095-27102, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016919

RESUMO

Stable luminescent radicals are open-shell emitters with unique doublet emission characteristics. This feature makes stable luminescent radicals exhibit widespread application prospects in constructing optical, electrical, and magnetic materials. In this work, a stable luminescent radical-based X-ray scintillator of AuPP-1.0 was prepared, which exhibited a high X-ray excited luminescence (XEL) efficiency as well as excellent stability. A mechanism study showed that the heavy atom of Au in AuPP-1.0 endowed it with effective absorption of X-rays, and the doublet emission characteristics of AuPP-1.0 significantly increased its exciton utilization rate in the radioluminescence process. Moreover, AuPP-1.0 has good processability to fabricate a flexible screen for high-quality X-ray imaging, whose resolution can reach 20 LP mm-1. This work demonstrates that the doublet emission is beneficial for improving the exciton utilization rate of radioluminescence, providing a brand-new strategy for the construction of high-performance X-ray scintillators.

14.
Cell Mol Biol Lett ; 28(1): 78, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828480

RESUMO

N6-methyladenosine (m6A) modification is a dynamic, reversible process and is the most prevalent internal modification of RNA. This modification is regulated by three protein groups: methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). m6A modification and related enzymes could represent an optimal strategy to deepen the epigenetic mechanism. Numerous reports have suggested that aberrant modifications of m6A lead to aberrant expression of important viral genes. Here, we review the role of m6A modifications in viral replication and virus-host interactions. In particular, we focus on DNA and RNA viruses associated with human diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus (HIV)-1, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus (KSHV). These findings will contribute to the understanding of the mechanisms of virus-host interactions and the design of future therapeutic targets for treatment of tumors associated with viral infections.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Viroses , Humanos , Herpesvirus Humano 4 , Herpesvirus Humano 8/genética , Replicação Viral
15.
J Transl Med ; 21(1): 602, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679817

RESUMO

Genomic instability is a common hallmark of human tumours. As a carrier of genetic information, DNA is constantly threatened by various damaging factors that, if not repaired in time, can affect the transmission of genetic information and lead to cellular carcinogenesis. In response to these threats, cells have evolved a range of DNA damage response mechanisms, including DNA damage repair, to maintain genomic stability. The X-ray repair cross-complementary gene family (XRCC) comprises an important class of DNA damage repair genes that encode proteins that play important roles in DNA single-strand breakage and DNA base damage repair. The dysfunction of the XRCC gene family is associated with the development of various tumours. In the context of tumours, mutations in XRCC and its aberrant expression, result in abnormal DNA damage repair, thus contributing to the malignant progression of tumour cells. In this review, we summarise the significant roles played by XRCC in diverse tumour types. In addition, we discuss the correlation between the XRCC family members and tumour therapeutic sensitivity.


Assuntos
Neoplasias , Humanos , Raios X , Neoplasias/genética , Reparo do DNA/genética , Carcinogênese , Dano ao DNA/genética
16.
Front Cell Dev Biol ; 11: 1232528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576596

RESUMO

Organoids are a class of multicellular structures with the capability of self-organizing and the characteristic of original tissues, they are generated from stem cells in 3D culture in vitro. Organoids can mimic the occurrence and progression of original tissues and widely used in disease models in recent years. The ability of tumor organoids to retain characteristic of original tumors make them unique for tumorigenesis and cancer therapy. However, the history of organoid development and the application of organoid technology in cancer therapy are not well understood. In this paper, we reviewed the history of organoids development, the culture methods of tumor organoids establishing and the applications of organoids in cancer research for better understanding the process of tumor development and providing better strategies for cancer therapy. The standardization of organoids cultivation facilitated the large-scale production of tumor organoids. Moreover, it was found that combination of tumor organoids and other cells such as immune cells, fibroblasts and nervous cells would better mimic the microenvironment of tumor progression. This might be important developing directions for tumor organoids in the future.

17.
PLoS Negl Trop Dis ; 17(8): e0011546, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647577

RESUMO

BACKGROUND: The order Rickettsiales contains a group of vector-borne gram-negative obligate intracellular bacteria, which often cause human emerging infectious diseases and economic losses for dairy and meat industries. The purpose of this study is to investigate the distribution of the pathogens including Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in the order Rickettsiales in ticks from Yueyang, a prefecture-level city of Hunan Province in Sothern China, and assess the potentiality of transovarial transmission of these rickettsial organisms. METHODS: Ticks were collected from cattle in a farm in Yueyang City and the tick DNA was used as template to amplify the htrA, rrs, gltA, ompA and ompB genes of Rickettsia as well as rrs and groEL genes of Anaplasma and Ehrlichia. RESULTS: All ticks (465) collected were the cattle tick, Rhipicephalus microplus. PCR showed the minimum infection rate (MIR) was 1.5% (7/465) for Candidatus Rickettsia xinyangensis, 1.9% (9/465) for C. Anaplasma boleense, 1.3% (6/465) for Anaplasma platys, 0.6% (3/465) for A. marginale, and 1.17% (2/465) for each of A. bovis, Ehrlichia minasensis, and a non-classified Ehrlichia sp. A human pathogen, C. Rickettsia xinyangensis and A. platys were detected in 100% (3/3) and 33.3% (2/6) laboratory-hatched larval pools from infected females respectively. CONCLUSION: Our study revealed a diversity of pathogenic rickettsial species in R. microplus ticks from Hunan Province suggesting a threat to people and animals in China. This study also provided the first molecular evidence for the potential transovarial transmission of C. Rickettsia xinyangensis and A. platys in R. microplus, indicating that R. microplus may act as the host of these two pathogens.


Assuntos
Besouros , Rhipicephalus , Rickettsia , Animais , Feminino , Humanos , Rickettsia/genética , Larva , Ehrlichia/genética , Rickettsiales , Anaplasma/genética
18.
Exp Mol Med ; 55(7): 1357-1370, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394582

RESUMO

Metabolic reprogramming and epigenetic modifications are hallmarks of cancer cells. In cancer cells, metabolic pathway activity varies during tumorigenesis and cancer progression, indicating regulated metabolic plasticity. Metabolic changes are often closely related to epigenetic changes, such as alterations in the expression or activity of epigenetically modified enzymes, which may exert a direct or an indirect influence on cellular metabolism. Therefore, exploring the mechanisms underlying epigenetic modifications regulating the reprogramming of tumor cell metabolism is important for further understanding tumor pathogenesis. Here, we mainly focus on the latest studies on epigenetic modifications related to cancer cell metabolism regulations, including changes in glucose, lipid and amino acid metabolism in the cancer context, and then emphasize the mechanisms related to tumor cell epigenetic modifications. Specifically, we discuss the role played by DNA methylation, chromatin remodeling, noncoding RNAs and histone lactylation in tumor growth and progression. Finally, we summarize the prospects of potential cancer therapeutic strategies based on metabolic reprogramming and epigenetic changes in tumor cells.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Epigênese Genética , Metilação de DNA , Neoplasias/genética , Neoplasias/terapia , Transformação Celular Neoplásica/genética
19.
ACS Cent Sci ; 9(7): 1419-1426, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37521783

RESUMO

X-ray scintillators are widely used in medical imaging, industrial flaw detection, security inspection, and space exploration. However, traditional commercial scintillators are usually associated with a high use cost because of their substantial toxicity and easy deliquescence. In this work, an atomically precise Au-Cu cluster scintillator (1) with a thermally activated delayed fluorescence (TADF) property was facilely synthesized, which is environmentally friendly and highly stable to water and oxygen. The TADF property of 1 endows it with an ultrahigh exciton utilization rate. Combined with the effective absorption of X-ray caused by the heavy-atom effect and a limited nonradiative transition caused by close packing in the crystal state, 1 exhibits an excellent radioluminescence property. Moreover, 1 has good processability for fabricating a large, flexible thin-film device (10 cm × 10 cm) for high-resolution X-ray imaging, which can reach 40 µm (12.5 LP mm-1). The properties mentioned earlier make the coinage metal cluster promising for use as a substitute for traditional commercial scintillators.

20.
Genes Dis ; 10(5): 2029-2037, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492749

RESUMO

Lactate is an end product of glycolysis. Owing to the lactate shuttle concept introduced in the early 1980s, increasing researchers indicate lactate as a critical energy source for mitochondrial respiration and as a precursor of gluconeogenesis. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells, resulting in diverse biological consequences including decreased lipolysis, immune regulation, and anti-inflammation wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, increasing evidence reveals that lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, which accounts for its key role in immune modulation and maintenance of homeostasis. Here, we summarize the function and mechanism of lactate and lactylation in tumor metabolism and microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...